Pollutant Trading in North Carolina's River Basins

North Carolina's River Basins

Trading or 'Trading'?

Trading Proper

- Most cost-effective means to goal
- Overall mass reduction goal/cap, individual allocations
- Market-driven exchange of credit to meet allocations
- Individual-to-individual, under same regulation

In-Lieu Fees in NC Nutrient Strategies

- More cost-effective means to goal
- Sources have allocations, achieve partial reduction
- Pay preset \$/lb remaining
- \$ to more cost-effective source controls
- Other source may not be under same/any regulation

Where is there Trading in NC?

Point Source Effluent Trading

Neuse Compliance Association

Point-Nonpoint In-Lieu Fees

- Tar-Pamlico Basin Assoc. ⇒ NC Ag Cost Share Program
- Neuse Compliance Assoc. ⇒ NC EEP WRF

Nonpoint-Nonpoint In-Lieu Fees

- Neuse new development ⇒ NC EEP WRF
- Tar/Neuse/Catawba buffer impacts ⇒ NC EEP RBRF
- Tar, Jordan new development ⇒ NC EEP WRF (draft)
- Jordan existing development ⇒ NC EEP WRF (draft)
- Jordan new, existing development ⇒? (draft)

'Nutrient Sensitive Waters' in North Carolina

Tar-Pamlico Nutrient Strategy

1989 "Nutrient Sensitive Waters"

1990 Point source cap, trading plan

1995 Phase II:

- Estuary goals: 30% N 🖖, no P 🥎
- Refined point source caps, trading
- Voluntary nonpoint source plan

2000 Nonpoint source rules:

- > Riparian Buffer Protection
- > Urban Stormwater
- > Fertilizer Management
- > Agriculture

2005 Phase III: Estuary clean-up by 2013

Tar-Pamlico River Basin Overview

Sources of Nitrogen to Pamlico River (% of N Load at Washington)

Trial and Error - Early Proposals

- Ø Technology limits N and P
- Ø Technology limits or offset w/\$11 m over 5 yrs. for equivalent ag BMPs

Final Phase I Agreement ('90-'94)

Association of dischargers (14)

- Annual step-down cap 525,000 ⇒ 425,000 kg N+P
- Exceed cap? Ag BMPs at \$56/kg
- Fund estuary model
- Earnest money trial of offset system
- Optimize facilities for nutrients
- Signatories included environmental groups

Phase II 1995 - 2004

- Association (16) steady annual N, P caps
- No individual limits
- Exceed cap? Ag BMPs at \$29/kg N
- Caveat for local water quality impacts
- Non-Association dischargers separate rule:
 technology limits + offset any new loading
- Enviro's did not sign

Agriculture BMP N Offset Rate

2(\$13/kg N) + 0.1[2(\$13)] = \$29/kg N

Uncertainty

Administration

Costeffectiveness
high end

Draft Revision to EEP Offset Rate

to provide for stormwater BMP retrofits

Stormwater BMP Cost-Effectiveness

Reduction Needed BMP Lifespan

N Fee = [\$57/lb (#lb/yr)(30 yrs) + \$/ac(1/35)(Ac Developed)] x 1.1

Cost of Developed Land

BMP/Drainage Area Ratio

Admin Cost Factor

P Fee = \$45/0.1 lb x (same as above)

For wastewater load offsets, land cost factor = 0

Tar-Pamlico Nutrient Strategy Where do Point Source Offset Payments Go?

- NC "Agriculture Cost Share Program for Nonpoint Source Pollution Control"
- Voluntary, 75% state / 25% producer
- Offset transparent to producer
- DSWC Basin Coordinator tracks, targets contracts
- Compliance monitoring:
 - SWCDs inspect min 5% contracts/yr
 - All animal waste systems inspected twice/yr
 - DSWC reviews local programs @ 5 yrs
- Compliance or pay back or Attorney General

NC Ecosystem Enhancement Program Offset Payment Administration

- In-Lieu Fee Coordinator tracks offset \$ sources geographically
- NCSU and local governments i.d. potential projects
- Offset BMP located no further from estuary than load being offset – committee selects
- Projects given to on-call EEP contractor pool
- Contractor responsible for design, construction, & 1 yr performance monitoring
- 30-yr O&M gov't entity: local, community college, etc.
- To date, ~\$5 million offset fees, all Neuse stormwater
- Numerous projects in design, most constructed wetlands, none in ground

N Cost-Effectiveness Comparison

Practice	\$/lb Reduced (30-Yr. Life Equiv.)		
Agriculture			
Water Control Structure	\$1.20		
Nutrient Management	\$7 - \$9		
 Vegetated Filter Strip 	\$7 - \$8		
· Conservation Tillage	\$20 - \$80		
Stormwater Wet Det. / Bioret.	\$57 - \$86		
Riparian Wetland Restoration	\$11 - \$20		

Point Source Association Nitrogen Loads, Tar-Pamlico River Basin, NC

Point Source Association Phosphorus Loads, Tar-Pamlico River Basin, NC

How Were Reductions Achieved?

Optimized existing operations for N, P removal

Two major facilities implemented nutrient removal

Together put Assoc. below caps, gave time for others to install nutrient removal very costeffectively as otherwise expanding, renovating, etc.

Nutrient Removal Installed by Association Members

•	1985, 1995	Greenville	9.8	MGD
•	1992	Rocky Mount	13.2	
•	1992	Washington	1.8	
•	1994	Louisburg	8.0	
•	1997	Enfield	0.6	
•	2000	Robersonville	1.4	
•	2001	Belhaven	<u>0.4</u>	
			28.0	

(Full Association = 34.1 MGD)

How Cost-Effective Were Reductions?

No good numbers, but to meet Phase I caps:

- Initial optimization: \$50,000 study
- Nutrient removal installed at Greenville, Rocky Mt. \$?
- (Estuary model \$300,000)

Vs:

Uniform technology limits estimate \$50-\$100 m

Or:

Ag BMPs estimate \$11.8 million

Nonpoint Source Rules

Tar-Pamlico Nutrient Strategy

Agriculture

- □ No û P
- Local & basin committees, annual reports

2) Fertilizer Management

- Applicators training or plans by April 2006
- Homeowners DWQ education program

Agricultural Nitrogen Loss Accounting Tool

45% Reduction in Agricultural N Loss Tar-Pamlico Basin, 1992-2003

Nonpoint Source Rules

Tar-Pamlico Nutrient Strategy

3 Riparian Buffer Protection

- Protects 50-foot vegetated buffers existing 1/00
- Existing uses in buffer continue
- Change of use must establish buffer
- To curb load increases

4 Urban Stormwater

- 11 local governments carry out
- New development permitting
- Illicit discharge detection & removal
- Education programs & seek retrofits

Catchment 1:			C4 a was	4 a a Ea	ant Calar	1.4:	
Total acreage of catchment 1 =		ac	Stormwa	iter Exp	ort Caici	nation [
First BMP's TN removal rate =		%	First BMP's TI	Premoval rate =		%	
Second BMP's TN removal rate =		%	Second BMP's TI	Second BMP's TP removal rate =		%	
Third BMP's TN removal rate =		%	Third BMP's TP removal rate =		%		
TOTAL TN REMOVAL RATE =	0	%	TOTAL TP REMOVAL RATE =		0	%	
(1) Type of Land Cover	(2) Catchment Acreage	(3) S.M. Formula (0.46 + 8.31)	(4) Average EMC of TN (mg/L)	(5) Column (2) * (3) * (4)	(6) Average EMC of TP (mg/L)	(7) Column (2) * (3) * (6)	
Transportation impervious			2.60		0.19		
Roof impervious			1.95		0.11		
Managed pervious			1.42		0.28		
Wooded pervious			0.94		0.14		
Area taken up by BMP			1.95		0.11		
Fraction Impervious (I) =			Pre-BMP TN Load (lb/yr) =		Pre-BMP TP Load (lb/yr) =		
Total Area of Development =			Pre-BMP TN Export (lb/ac/yr) =		Pre-BMP TP Export (lb/ac/yr) =		
			Post-BMP TN Load (lb/yr) =		Post-BMP TP Load (lb/yr) =		
			Post-BMP TN Export (lb/ac/yr) =		Post-BMP TP Export (lb/ac/yr) =		

Pamlico & Pungo Estuary Impairment Tar-Pamlico Basinwide Plan, March 2004

Phase III 2005 - 2014

- Estuary clean-up deadline 2013
- Ag BMP offset improvements w/in 2 years:
 - Revise cost-eff. value for projected BMPs
 - Uncertainty estimate upper bound
 - Spatial weighting for delivery differences?
 - Establish P offset rate
- Refinements not made estuary re-model, transport improvements
- Environmental groups returned

Tar-Pamlico Review

- Point sources
 - Trades? No.
 - Success? Yes. Cost-effective reductions.
 - Via? Group caps. Existence value to offset...
- NPS:
 - Incomplete coverage existing development
 - Ag qualified success (accounting)
- · Trading:
 - Selective offset design limiting
- Less pressured basin aiding success

Proposed Nutrient Strategy Jordan Lake Watershed

- Reduction goals by lake arm -
 - Upper New Hope: 35% N ♥, 5% P ♥
 - Lower New Hope: No increases N or P
 - Haw:
- Point Sources:
 - Individual load allocations
 - Effluent trading
 - Compliance association + in-lieu exceedence fee

8% N 1,5% P

- NPS rules similar to Neuse/Tar-Pamlico, plus:
 - All local governments subject to stormwater rule
 - Loading reductions from existing development
 - Possible trading among all sources

More Information

Tar-Pamlico Nutrient Strategy

http://h2o.enr.state.nc.us/nps/tarpam.htm

Neuse Nutrient Strategy

http://h2o.enr.state.nc.us/nps/Neuse_NSW_Rules.htm

Draft Jordan Lake Nutrient Strategy

Report to September 2005 Water Quality Committee:

http://h2o.enr.state.nc.us/admin/emc/

Stakeholder Process:

http://www.tjcog.dst.nc.us/jorlak/jlsp.htm

DWQ staff contact: Rich Gannon 919-733-5083 ext. 356, rich.gannon@ncmail.net